Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Радикалы значение химическое

    В случае разветвленных цепных реакций гибель свободного радикала при химических превращениях реагирующих веществ сопровождается рождением нескольких новых свободных радикалов. В зависимости от эффективности процессов, приводящих к гибели свободных радикалов, значение Ц в таких реакциях может оказаться больше, равно или меньше единицы. От этого будет зависеть режим протекания реакции. Если р 1, то реакция протекает в стационарном режиме. Если р > 1, то в, реагирующей системе происходит прогрессирующий рост концентрации свободных радикалов во времени, что ведет к возрастанию скорости реакции во времени. В таком случае режим протекания реакции называют автоускоряющимся. [c.132]


    На значение и концентрационные пределы горения горючей смеси влияет химический состав горючего (табл. 3.1). Наибольшей скоростью горения характеризуется водород. Для углеводородов различных гомологических рядов значение н(макс> возрастает в ряду парафины < олефины < диены < ацетилены. Замещение в углеводородах водорода на метильный радикал снижает и ( акс). Циклопарафины с 3—4 углеродными атомами в кольце имеют более высокие значения и , чем соответствующие парафины при большем числе атомов углерода в- [c.118]

    Энергия активации — одна из важнейших характеристик простой химической реакции. Для радикал-ра-дикального или радикал-молекулярного взаимодействия значения Е обычно лежат в пределах О—10 ккал/моль, для атом-молекулярного или молекулярно-молекулярного процесса обычные значения заключены в пределах 15—40 ккал/моль, хотя в отдельных случаях они достигают величин 60т -80 ккал/моль. [c.72]

    Молекула На. Электронная конфигурация молекулы Н2 в основном состоянии Нг Ь), молекулярный терм (дублет сигма). Единственный электрон молекулы на ag связывающей орбитали обеспечивает химическую связь. Молекула Нг — свободный радикал. Радикалами называют частицы с открытыми оболочками. Радикальный характер молекулы Нг легко обнаруживается по ее парамагнетизму, обусловленному только спином электрона, так как орбитальный магнитный момент молекулы равен нулю. Другие свободные радикалы также парамагнитны. В молекуле Нг между единственным электроном и ядрами нет экранирующих электронов, поэтому она характеризуется самым высоким значением ПИ = 16,25 эВ и СЭ = = 15,4261 эВ, намного превышающим СЭ других молекул. [c.75]

    В качестве примера можно привести корреляцию химического сдвига протонов с электроотрицательностью заместителей, позволяющую кроме оценки значений б по известной шкале электроотрицательностей проводить и обратную процедуру — по значениям O определять электроотрицательность заместителя, от которой зависит электронная плотность около протонов. Так, для фрагмента —СНХ—СН— при увеличении электроотрицательности атома X сигнал ближайшего протона смещается в сторону меньшей напряженности поля, т. е. химический сдвиг растет (а-эффект), а сигнал более удаленного протона — в сторону более сильного поля, т. е. химический сдвиг падает ( -эффект). Или, например, для протонов этильного радикала в соединениях СНз—СН2—X химические сдвиги могут быть представлены зави- симостью [c.32]


    Можно видеть, что при переходе от одного радикала к другому молекулярный вес увеличивается на 14 единиц. Если величину молекулярного веса для первого члена обозначить через а, а разность через й, то величину молекулярного веса для любого радикала можно выразить формулой а + пй. Легко видеть, что и здесь соотношение, найденное для триад Деберейнера, также сохраняется. Если рассматривать три последовательных члена ряда, то молекулярный вес среднего члена окажется равным среднему арифметическому из молекулярных весов двух. других членов. Подобные наблюдения указывали на существование некоторой связи между химическими свойствами и молекулярным весом, но сами по себе эти наблюдения особого значения не имели. [c.81]

    Реакции концевых групп полимера являются макромолекулярными реакциями. В них участвует вся макромолекула, выступая как монофункциональное соединение с большим и сложным радикалом, причем реакционная способность функциональной группы не зависит от размера радикала. Если на концах каждой макромолекулы полимера содержится только по одной функциональной группе, то число функциональных групп обратно пропорционально значению молекулярной массы полимера. На этом основаны химические методы определения среднечисловой молекулярной массы полимеров. [c.223]

    На рис. 88 приведен спектр ЯМР атомов водорода в этиловом спирте. В спектре низкого разрешения (пунктирная линия) имеются три пика поглощения. Атомы водорода метильного радикала СН образуют одну группу и поглощают резонансную частоту в соответствии с их химическим сдвигом. Два атома водорода метиленовой группы СНг, находящиеся в другой части молекулы, имеют другой химический сдвиг и входят в резонанс при ином значении внешнего магнитного поля. Химический сдвиг протонов группы СНг относИ" тельно СНз, измеряемый расстоянием между центрами полос поглощения, на рис. 88 обозначен Д. Последний атом водорода гидро ксильной группы ОН характеризуется другим окружением атомов и, следовательно, другим химическим сдвигом. А потому для него отмечается третье значение магнитного поля, при котором происходит поглощение резонансной частоты. Площади этих пиков находятся в [c.188]

    Трудно переоценить значение работ Гомберга в химии свободных радикалов и вообще в органической химии. Хотя трифенилметильный радикал был выделен только благодаря тому, что он не является типичным свободным радикалом, его химические свойства характерны для свободных радикалов главное, Гомберг доказал, что такие частицы, как свободные радика-лы, могут вообще существовать. [c.384]

    За три года до выступления в Парижской академии наук Ш. Жерар опубликовал работу, в которой излагал теорию остатков. В основе этой теории лежала мысль, что с принятием унитарной системы (противопоставленной дуалистической) полностью отвергается само существование радикалов как органических атомов. Между тем понятие радикал , если его лишить значения, придававшегося ему электрохимической теорией, оказывается существенным для понимания химических процессов. [c.126]

    Случаях — четырем). Значения меньшие химического значения, объяс-> няются на основе гипотезы о горячих радикалах (см. стр. 40). При взаимодействии полимерного радикала с молекулой ингибитора происходит образование горячего радикала, который может или регенерировать реакционную цепь или дезактивироваться. Если считать Ях = 1, то [1 должно равняться удвоенной вероятности дезактивации горячего радикала. В рамках рассматриваемой концепции необходимо различать регенерацию цепи через холодные и горячие радикалы. Первый процесс зависит от концентрации ингибитора и от температуры, тогда как второй процесс не зависит от этих параметров. Авторы цитированных работ приводят различные соображения в пользу выдвинутого ими объяснения малых стехиометрических коэффициентов. [c.160]

    Несмотря на то что образование катион-радикала при хемосорбции углеводородов до сих пор не рассматривалось в литературе по катализу, природа, реакции и механизм образования таких катион-радикалов должны иметь большое значение для объяснения механизмов каталитических реакций, особенно в связи с тем, что Уэбб [20] при адсорбции бутена-2 на алюмосиликате нашел спектральное доказательство образования структур, отличных от иона карбония. В настоящее время нельзя выяснить ни роль катион-радикалов в кислотном катализе, ни химическую природу электрофильных мест поверхности, принимающих участие в их образовании. [c.85]

    С уравнениями (5.45) и (5.46), установлено, что доля сти рола в сополимере увеличивается с уменьшением его концентрации в реакционной смеси. Это показано на рис. 36. Чтобы понять химическое значение этого необычного явления, можно напомнить, что радикал с двумя последовательными стирольными группами на активном конце становится неспособным к ступенчатой деполимеризации. С другой стороны, радикал с концевой группой стирола и предпоследней группой двуокиси серы может или (1) потерять обе эти группы при деполимеризации, становясь, таким образом, стабильным, или (2) присоединить стирол, замыкая при этом звено двуокиси серы внутрь цепи. Увеличение концентрации стирола способствует процессам, противоположным (2), которые могут привести к увеличению количества двуокиси серы в полимерной цепи. [c.225]


    Скорость элементарной бимолекулярной реакции. Для вычисления скорости элементарной бимолекулярной реакции необходимо исходить из числа столкновений, при которых энергия системы превосходит некоторое данное значение. Это связано с тем, что для осуществления химической реакции энергия сталкивающихся молекул обычно должна превосходить некоторое минимальное значение, называемое энергией активации. Существование энергии активации обусловлено сам ой природой химических сил. Известно, что валентно насыщенная молекула при обычных условиях не может присоединить к себе какой-либо атом или радикал, поскольку при сближении этих частиц между ними возникает отталкивание С преодолением этого отталкивания и связана необходимость активации молекул (см. 10 и 11). Однако, помимо достаточно высокой энергии сталкивающихся молекул, для осуществления реакции необходимо также вполне определенное перераспределение энергии между различными степенями свободы сталкивающихся молекул, которое не учитывается при расчете числа столкновений Обозначим через Р вероятность того, что столкновение данного типа приведет к химической реакции. В общем случае Р зависит от энергии сталкивающихся частиц (относительной скорости и), от их взаимной ориентации (угла а) и состояния молекул. Вводя Р в подинтегральное выражение (9.16), для скорости бимолекулярной реакции будем иметь [c.130]

    Химическая природа инициатора имеет большое значение, определяемое двумя функциями, которые он выполняет. С одной стороны, он может инициировать полимеризацию мономера с образованием макрорадикалов. Эти радикалы затем могут атаковать основной полимер, в результате чего в нем возникнут активные центры, на которых будет протекать реакция прививки, т. е. в основной цепи полимера образуется свободный радикал. С другой стороны, при распаде инициатора могут образоваться радикалы, непосредственно инициирующие привитую сополимеризацию. Этот процесс заключается в следующем. Радикалы, образовавшиеся нри распаде инициатора, вместо того чтобы инициировать полимеризацию мономера, непосредственно атакуют основную цепь находящегося в реакционной среде полимера и отрывают от нее атом водорода или какой-то другой атом, в результате чего возникает активный центр, на котором протекает реакция прививки. [c.264]

    При переходе от Р-хлорвипилкетонов к соответствующим а-(р-кетови-нильным) производным железа происходит небольшой сдвиг сигналов всех протонов в сторону слабых полей. Для протона у атома углерода, непосредственно связанного с металлом, резонансный сигнал смещается в сторону низких полей почти на 2 м. д., и наблюдаемые химические сдвиги (8,77—9,21 м. д.) являются, видимо, самыми большими из всех известных для олефиновых протонов. Однако столь сильное смещение в сторону слабых полей нельзя связать с большой электроноакцепторностью я-С5Н5Ге(СО)2-остатка, так как сигнал от винильных протонов, соседних с карбонилом, практически не смещается и одновременно происходит значительное возрастание /дв- Столь низкое значение химического сдвига для винильного протона, соседнего с атомом железа, вероятно, обусловлено большой анизотропией связи С—Fe, а также увеличением вклада биполярных структур П и III по сравнению с исходными кетонами, что согласуется с данными ИК-спектров. Близкое значение б = 8,26 м. д. для олефинового протона наблюдали для винильных железоорганических соединений, в которых наряду с а-связью железо — углерод имеется я-связь винильного радикала с атомом железа [9]. [c.93]

    Благодаря наличию у радикалов свободных валентностей энергия активации процессов, протекающих с их участием, имеет порядок величины энергии активации атомных реакций, и, следовательно, они идут с такой же большой скоростью, как и реакции, в которых участвуют атомы. Особенно интересны радикалы, имеющие две свободные валентности. К таким радикалам относятся двухвалентные атомы О, 8, 8е и радикал метилен СНг , получающиеся в результате термического или фотохимического разложения диазометана (СНгМг- СНз- + N2) или фотохимического разложения кетена (СН2 = С0— СНз +С0). Устойчивые органические бирадикалы могут быть получены путем отрыва двух атомов водорода от молекул углеводородов. Активные бирадикалы имеют большое значение в химических процессах, так как способствуют возникновению так называемых разветвленных цепных реакций. [c.85]

    Начало XX века ознаменовалось, после открытия Ромбергом свободного трифенилметильного радикала, возрождением представления о свободных радикалах как реально существующих осколках молекул. До этого времени на протяжении-40 лет идея о реальности радикалов была изгнана из химии. В радикалах видели только удобный символический прием изображения строения органических соединений. После экспериментального подтверждения реальности радикалов с новой силой ожил интерес исследователей к радикалам, к изучению той роли, которую они могут играть в реакциях. Эту роль еще в середине XIX века предвидели А. М. Бутлеров и другие исследователи, полагавшие, что радикалы реально существуют. Новый мир радикалов как частиц с весьма своеобразными свойствами, необычайно активных относительно реакций, в которые они могут вступать, прёдстал перед взором исследователей. Возникла новая область науки — химия радикалов, тесно связанная с учением о скоростях превращений — химической кинетикой. Неудивительно-поэтому, что в первой четверти XX века появляются работы, в которых настойчиво проводится мысль о значении радикалов в процессе пиролиза органических веществ [Ц —13]. Встречающиеся в этих работах данные о влиянии температуры и давления на быстроту крекинга и выход продуктов но-13 [c.18]

    Второй вариант отличается от первого тем, что при обмене между адсорбционно-сольватными слоями ССЕ и дисперсионной средой топлива происходят самопроизвольные химические изменения (автоокисление). Химические превращения в процессе горения топлив представляют собой цепные реакции с участием свободных радикалов. Причем основными реакциями являются реакции продолжения цепи, в результате которых прн взаимодействии радикала с молекулами дисперсионной срсды или промежуточного продукта образуется новый активный центр. Свободные радикалы наиболее легко возникают в адсорбционно-сольватном слое ССЕ под воздействием адсорбционного поля, чему способствуют и другие внешние воздействия (термические и фотохимические и др.). Свободные радикалы могут вступать также в обменные реакции, реакции распада и присоединения. Глубина этих реакций зависит от температуры, степени дисперсности пузырьков кислорода, состава и структуры углеводородов, времени и других факторов. Углеводороды, в первую очередь попадающие в адсорбционно-сольватньп слой, имеют наиболее высокие значения сил ММВ и наиболее склонны к образованию радикалов. [c.214]

    Выделение органической химии в самостоятельный раздел химической науки вызвано многими причинами. Во-первых, это связано с многочисленностью органических соединений (в настоящее время известно свыше трех миллионов органических Еси еств, а неорганических— около 150 тыс.). Вл дряя причина состоит в сложности и своеобразии органических веществ по сравнению с неорганическими. Например, их температуры плавления и кипения имеют более низкие значения они легко разрушаются при воздействии на них даже сравнительно невысоких температур (часто не превышающих 100°С), в то время как неорганические вещества свободно выдерживают очень высокие температуры. Большинство химических реакций с участием органических соединений протекает гораздо медленнее, чем ионные реакции неорганических веществ, что обусловлено природой основной химической связи в органических веществах — ковалентной связью. Углерод, входящий в состав органических веществ, обладает особой способностью соединяться не только с несколькими другими углеродными атомами, но и почти со всеми элементами периодической системы (кроме инертных газов). Следует подчеркнуть, что выход продукта в органической реакции, как правило, ниже, чем при реакции неорганических веществ. Кроме того, в области органической химии приходится сталкиваться с новыми понятиями и явлениями органический радикал, функциональная группа, изомерия и гомология, а также взаимное влияние атомов и атомных групп в молекуле. [c.5]

    Все сведения о строении и свойствах объектов химии (молекул, радикалов, комплексов, кристаллов и т. п.) в принципе могут быть получены решением уравнения Шрёдингера для соответствующих, систем ядер и электронов. Однако точное решение уравнения Шрёдингера для всех интересующих химию систем — молекул, радикалов, комплексов и т. п. — наталкивается на практически непреодолимые математические трудности Поэтому квантовая химия, как правило, использует приближенные расчетные методы, а также по-луколичественные и качественные. Даже получаемая квантовой химией качественная информация о строении и свойствах веществ имеет принципиальное значение для химии. При разработке таких приближенных методов основываются не только на математических соображениях (при подборе вида исходной волновой функции), но и на фактическом материале химии. Квантовая химия в основном рассматривает стационарное состояние системы из электронов и ядер (входящих в состав молекулы, радикала и т. п.), для которого характерен минимум энергии. В настоящее время главная заслуга квантовой химии заключается в раскрытии природы химической связи. Наибольшее распространение получили два квантово-химических способа приближенного расчета систем из ядер и электронов, отвечающих химическим объектам, — метод валентных связей и метод молекулярных орбиталей. В обоих ме- [c.88]

    Исследование причин существенного отклонения закономерностей термического распада простых нитратов моноспиртов от первого прядка показало, что полученные результаты не противоречат общепринятому представлению о том, что первая макроскопическая стадия распада этилнитрата представляет собой радикальную обратимую реакцию образования этоксильного радикала и двуокиси азота. Это подтверждают и квантовомеханические расчеты, полученные ранее. Относительно дальнейшего поведения этоксирадикала и двуокиси азота имеются две точки зрения. Первый механизм предусматривает дальнейшее взаимодействие радикала с молекулами и фрагментами органической природы. Вторая точка зрения сводилась к тому, что алкоксирадикал претерпевает химические [гревра-щения исключительно за счет реакций с окислами азота. На основе экспериментальных и имеющихся литературных данных получены количественные значения констант промежуточных реакций и начальной стадии распада. [c.75]

    Как и соединения многих других классов, карбонильные соединения могут протонироваться протонированные формы восстанавливаются при менее отрицательных потенциалах по сравнению с непротснированными. В полярографии это проявляется в сдвиге потенциала полуволны к мепее отрицательным значениям (при достаточно высокой скорости протонирования) при относительно малой скорости протонирования могут появиться (также прн менее отрицательных потенциалах) кинетические волны [22—33]. Предшествующее протонированне часто является определяющим моментом в препаративных электрохимических процессах, так как прн этом изменяются условия адсорбции, соотношение скоростей электродных и последующих химических стадий и т. п. Напрнмер, анион-радикал кумарина восстанавливается при более отрицательных потенциалах, чем нейтральная молекула, тогда как нейтральный радикал восстанавливается прн менее отрицательных потенциалах, чем прото-ннрованная молекула кумарина [34]. [c.321]

    Цепные реакции — химические и ядерные реакции, в которых появление активной частицы (свободного радикала или атома в химических, нейтрона в ядерных процессах) вызывает большое число (цепь) последовательных превращений неактивных молекул или ядер. Свободные радикалы или атомы в отличие от молекул обладают свободными ненасыщенными валентностями (непарным электроном), что приводит к легкому нх взаимодействию с исходными молекулами. Прн первом же столкновении свободного ради кала (R ) с молекулой происходит р азрыв одной из валентных связей последней, и, таким образом, в результате реакции образуется новая химическая связь и HOBiiin свободный радикал, который в свою очередь реагирует с другой молекулой — происходит цепная реакция. В ядерных Ц. р. активными частицами являются нейтроны, так как они, не обладая зарядом, беспрепятственно сталкиваются с ядрами атомов и вызывают ядерпуюреакцию (деление ядер). КЦ. р. (в химии) относятся процессы окисления (горение, взрыв), крекинга, полимеризации и др., широко применяющиеся в химической и нефтяной промышленности. Изучение Ц. р. ядерной физики имеет большое значение для использования атомной энергии. Церезин — очищенный озокерит. [c.153]

    Спектроскопические свойства гидроксильной группы представляют большой интерес для структурного анализа замеш,енных фенолов. Экспериментальные данные показывают влияние изомерии на сдвиг ДуОН, и, следовательно, энергию межмолекулярной водородной связи (МВС). В ряду орто-, мета- и пара-изомеров алкилфенолов частота у(ОН)мвс уменьшается, а смещение ДуОН увеличивается соответственно возрастает прочность водородной связи. При этом большее различие в величинах частот наблюдается у орто- и пара- и у орто- и мета-изомеров аналогичные параметры у мета- и пара-изомеров отличаются незначительно. Этот факт иллюстрирует наибольшее стери-ческое влияние на ОН-фуппу орто-заместителя. Влияние сказывается как на спектроскопических параметрах (частота, полуширина и интенсивность полосы поглощения), так и на физико-химических свойствах гидроксила (дипольный момент, способность к образованию водородной связи, константа ионизации). Так, последовательному ряду орто-заместителей 2—СНз 2-изопропил- 2-втор-бутил->2-трет-бутил соответствует следующий ряд значений уОН вс 3435-> ->3480->3485 3540 см->. Чем больше объем орто-радикала, тем больше степень экранирования ОН-фуппы и тем выше сдвиг ДуОН по сравнению с незамещенным фенолом. [c.13]

    Экспериментальные и литературные данные по рКа иллюстрируют глубокую взаимосвязь между структурой алкилфенолов и их протоно-донорными свойствами в процессах ионизации. Алкильные группы, как электронодонорные заместители, уменьшают константу диссоциации фенола электроноакцепторные заместители повышают константу диссоциации. рК зависит от а) природы заместителя, б) химического строения радикала и его положения по отношению к ОН-группе, в) числа алкильных заместителей и их относительного расположения в кольце. В значениях рК наблюдается аддитивность, поэтому величину константы ионизации полизамещенных алкилфенолов можно предсказать на основании соответствующих инкрементов для радикалов в о-, м- и п-положениях. Роль стерических факторов ярко проявляется в ряду орто-замещенных алкилфенолов. Эффект сте-рического экранирования сольватации объемистыми орто-заместите-лями возрастает при переходе от НОН к СН3ОН. [c.25]

    Высокую активность проявляют радикалы и в реакциях присоединения. Например, пероксильный радикал окисляющегося стирола присоединяется к двойной связи стирола с константой скорости к = 6S лДмоль-с), а молекула кислорода - с Л = 5,6 10 л/(моль с) (298 К). Как и в случае реакций отрыва, различие вызвано тем, что первая реакция экзотермична (ДЯ - -100 кДж/моль), а вторая - эндотермична (ДЯ = 125 кДж/моль). И в этом случае различия обусловлены тем, что в свободном радикале запасена химическая энергия. Для иллюстрации ниже приведены значения дЯдля молекул RH и образующихся из них радикалов R . Видно, что эта разница составляет от 180 до 280 кДж/моль, т. е. очень значительна  [c.349]

    При действии на полимеры ионизирующих излучений с высокой энергией (у-лучей, быстрых электронов, рентгеновских лучей и др.) происходят деструкция и сшивание цепей, разрушение кристаллических структур и прочие явления. Под действием излучений макромолекулы полимера ионизируются и возбуждаются. Возбужденная молекула может распадаться на два радикала, т.е. деструктироваться А Я, +. Реакции деструкции и сшивания идут параллельно, а какому именно процессу подвержен тот или другой полимер зависит от его химического строения и значения теплот полимеризации. Так, деструкции более подвержены полимеры 2,2-замещенных этиленовых углеводородов (полиметилметакрилат, полиизобутилен, поли-а-метилстирол), целлюлоза, галогенсодержащие полимеры, которые имеют невысокие теплоты полимеризации. Полимеры с большой теплоюй полимеризации, не имеющие четвертичных атомов углерода в цепи, при облучении в основном сшиваются, а количество разорванных и сшитых связей зависит от интенсивности облучения. [c.113]

    Термодинамическая вероятность протекания химической реакции определяется величиной изменения в процессе свободной энергии Гиббса. Необходимым условием протекания реакции деструкции является отрицательное значение энергии Гиббса. Термические реакции протекают по радикальному механизму как цепные, так и не цепные. Вероятность протекания ионных реакций незначительная. Так, гетеролитичес-кий распад, например, связи С-С происходит с затратой энергии 1206 против 360 кДж/моль для гомолитического распада. Согласно радикально-цепной теории, при первичной стадии термического распада парафиновых углеводородов образуются два свободных радикала, которые могут дать начало реакционным цепям. Направление распада молекулы парафинового углеводорода на радикалы зависит от величины энергий связей, которые характеризуются теплотой их образования. [c.127]

    ВОДЫ При импульсном энергетическом воздействии на водные растворы и абсолютные значения констант скорости некоторых реакций, определенных этим методом. Большая часть реакций в этой таблице представлена только левой частью химического уравнения. К такой форме записи прибегают, когда природа первичного продукта неизвестна или не изучалась в данном исследовании. Например, первичным продуктом реакции Н с могут быть Fe-" и Н+ или гидрид РеН +, реакции е с Hj O Hj — анион-радикал СНзСО СНз или частицы СН3СО и СН и т.д. [c.71]

    Способы возбуждения мономера. Процесс возбуждения мономера. т е. Превращение его в первичный радикал, требует затраты энергии. Этот процесс может происходить под влиянием тепла, света, ионизирующего шлучения (а-, р- и -лучи), а также при введении в систему извне свободных радикалов или веществ, легко распадающихся на свободные радикалы (инициаторов). В зависимости от способа образования свободных радикалов различают ермическую. фотохимическую, радиационную полимеризацию и Полимеризацию под влиянием химических инициаторов во полимеризация—это полимеризация, при которой зоуждсние молекул мономера происходит пол действием тепла, тот вид полимеризации имеет большое значение, так как на [c.39]

    В случае быстрого обрыва среднее время жизни радикала в частице равняется среднему интервалу времени между двумя последовательными попадавиями радикалов в частицу, т. е. и. Если то за время жизни радикала в частице он практически не успевает принять участие в реакциях передачи цепи, и поэтому их. можно не учитывать при расчете молекулярной массы. Если iи > то значение средней степени полимеризации полимеров не будет зависеть от коллоидных характеристик латекса, оно будет определяться только скоростями химических реакций роста и передачи цепи. В частности, значение среднечисловой степени полимеризации в этом случае определится простым соотношением Риг = Ар[Л1]/(йв[5]), известным в теории гомогенных процессов. Молекулярно-массовое распределение продуктов эмульсионной полимеризации при также будет описываться формулами этой теории. [c.74]

    ЯМР-спектроскопия является весьма удобным и наглядным методом изучения Ассоциативно-диссоциативных процессов в системах с химически пе взаимодействующими компонентами. Иа рис. XXVI.7, а приведены изменения химических сдвигов протонных сигналов ЯМР гидроксильной группы (относительно значений, отвечающих чистым спиртам) в системах нормальные алифатические спирты—СС14. Из рисунка видно, что в большем интервале концентраций химические сдвиги ОН незначительны и лишь при весьма больших разбавлениях величина Аб начинает резко возрастать. При этом в растворах одинаковых концентраций Аб уменьшается от бутилового спирта к метиловому. Поскольку величина Аб симбатна глубине диссоциативного распада спирта, подобное изменение Аб отвечает уменьшению прочности ассо-ииатов с возрастанием углеводородного радикала. [c.389]

    НОСТЬЮ 5—50 р,1час, изучал скорость полимеризации мономеров в чистом виде и в растворе, измеряя также скорость расходования стабильного окрашенного свободного радикала дифенилпик-рилгидразила. Измеряя молекулярные веса и скорости полимеризации, можно было оценить скорости образования радикалов этот результат был проконтролирован по скорости исчезновения дифенилпикрилгидразила, исходя из предположения, что каждый радикал реагировал с одним радикалом дифенилпикрилгидразила. На основании этих оценок и известной мощности дозы можно было определить количество радикалов на 100 эв эти значения приведены во второй графе табл. 4. Исходя из известных значений энергии связи и из предположения о характере разорванных связей, можно было вычислить долю энергии излучения, израсходованной на химические изменения эти значения приведены в третьей графе. [c.57]

    Предположение о существовании радикала НОг было высказано Бахом [86]. В дальнейшем оно было вновь выдвинуто Хабером [1916] для объяснения механизма реакции между водородом и кислородом и использовалось многими авторами при изучении кинетики газовых реакций (см. например [240, 304, 244]). Попытки найти доказательства существования радикала НОз предпринимались многими исследователями. Обзор предлагавшихся доказательств существования радикала НОг, опиравшихся на анализ результатов химических исследований и на результаты теоретических расчетов, имеется в работе Минкоффа [2924]. В этой работе им было дано теоретическое доказательство стабильности радикала НО2, основанное на применении полуэмпири-ческого метода Глесстона, Лейдлера и Эйринга [154] для изучения взаимодействия между атомом Н и молекулой О2. В работе [2924] была также предпринята попытка оценить основные частоты колебаний и значения структурных параметров линейной модели радикала НО2. В то же время Минкоффом было отмечено, что более основательно предположение о нелинейном строении радикала НО2. [c.211]

    Реакциям свободных атомов и радикалов, образовавшихся в первичных процессах, а также в быстрых ионно-молекулярных реакциях и реакциях возбужденных частиц, требуется быть также сравнительно быстрыми, для того чтобы обогнать процесс нейтрализации. Так, реакция радикал — молекула должна была бы (при давлении атм) проходить с вероятностью не менее 10 —10" (на одно столкновение), поскольку приведенное типичное значение т, составляет по порядку величины миллисекунду. При стерическом факторе 1 это отвечает при комнатной температуре энергии активации меньше 8—9 ккал. Поэтому часть атомных и радикальных реакций обгоняет рекомбинацию ионов (не конкурируя с ней), а часть требует времени, большего, нежели нейтрализация. Поскольку, кроме того, при самой не 1трализации вследствие ее диссоциативного характера рождаются новые атомы и свободные радикалы и поскольку рекомбинация атомов и радикалов имеет константы скорости на несколько порядков меньше, чем константы нейтрализации, значительная доля реакций радикалов с молекулами и сама рекомбинация атомов и радикалов являются в последовательности элементарных процессов сложной радиационно-химической реакции самыми поздними. [c.383]

    Сагден рассмотрел кинетическую схему реакций, которая приводит к определяюшему влиянию одного из процессов [22]. Он показал, что, вероятно, каждая из реакций в пределах достигаемого временного разрешения обеспечивает равновесие между металлом и гидроксилом наблюдаемая величина ф не отстает от локальной концентрации радикала. При низкой энергии диссоциации связи М—ОН это равновесие достигается в первой реакции, в противном случае — во второй. Если константы скоростей обеих реакций имеют нормальные значения, то следует ожидать, что первая обладает небольшой или нулевой энергией активации, но, являясь тримолекулярным процессом, должна иметь эффективность порядка 10 ". Поскольку эта величина содержит число столкновений с второстепенным компонентом ОН, ее нужно уменьшить на порядок [3]. Таким образом, за 10 столкновений атома металла будет происходить один элементарный химический акт. Эффективность второй реакции равна единице, но она происходит с участием основного компонента, концентрация которого обычно около Ю атм. Энергия активации такой реакции по крайней мере не меньше теплоты реакции, поэтому вторая реакция будет медленней первой, если больцмановский множитель не больше 10" . При температуре 1800 К этой величине соответствует энергия активации 210 кДж/моль. Теплота реакции представляет собой разность энергий связей М—ОН и Н—ОН. Принимая последнюю равной 515 кДж/моль при 1800 К, можно увидеть, что тримолекулярные процессы будут быстрее, если только энергия связи М—ОН не больше 300 кДж/моль. [c.218]

    Постепенное подавление спектра молекул колебательно-возбужденного кислорода и замена его спектром поглощения ОН при фотолизе Оз в присутствии возрастающих количеств водяного пара является химическим доказательством того, что атом кислорода, генерированный первичной фотохимической реакцией (6), действительно находится в состоянии [9, 10, 35]. Форбс и Хейдт [32] показали классическими методами, что при фотолизе озона в присутствии воды квантовый выход может дойти до 130, по сравнению со значением 8, полученным для сухого озона. Ясно, что принятый ранее механизм распространения цепи в этом случае должен быть изменен и на основании наших данных по экспериментальному обнаружению радикала ОН можно постулировать следующий цепной механизм  [c.571]

    Фигурирующий в данном механизме радикал НО2 (пергидро-ксил) был впервые упомянут Кальвертом и введен в химическую кинетику Габером , Бонгеффером Внльштеттером п Вейссом Для радикала О ", который можно рассматривать как анион НО2, Латимер на основе точных термодинамических данных привел константу диссоциации, равную по порядку величины К = 10 молъ-л . Ориентировочные значения нормальных потенциалов обеих реакций перехода, по Латимеру , Яо = —0,56 в для О ад -Ь [c.669]

    При теоретическом рассмотрении зависимости между потенциалами полуволн гетероциклических систем и их химической структурой был использован простой метод МО ЛКАО [85, 86]. Например, для восстановления альдегидов типа С4НзО(СН = = СН) СНО (производные фурана, п=0, I, 2) показана удовлетворительная корреляция между потенциалом полуволны, экстраполированным к рН = 0, и разностью энергий я-электронов начального и конечного состояний (конечным состоянием здесь является радикал, образующийся после присоединения к карбонильной группе электрона и протона). Справедливо следующее уравнение 1/2=—2,80 + 4,32(0 (значение со см. [86]). Аналогично было рассчитано влияние индуктивного эффекта на потенциал полуволны 1-, 2-, 3- и 4-метоксиксантонов [87]. Полученные таким образом потенциалы полуволн находятся в превосходном соответствии с ожидаемыми значениями, исключая 1-метоксиксантон, для которого предполагается наличие водородной связи. Однако для изомерных альдегидов пиридина указанная выше зависимость не имеет места. [c.273]


Смотреть страницы где упоминается термин Радикалы значение химическое: [c.12]    [c.283]    [c.64]    [c.157]    [c.219]    [c.64]    [c.64]    [c.220]    [c.7]    [c.255]   
Сочинения Научно-популярные, исторические, критико-библиографические и другие работы по химии Том 3 (1958) -- [ c.264 ]




ПОИСК







© 2024 chem21.info Реклама на сайте